• HOME
  • NEWS
  • About US
    • P.I.
    • Faculties
  • STUDENTS
    • ALUMNI
  • Publications
    • Journal Articles
    • Conference Papers
  • Research
    • Research Directions
    • Projects
    • Experiment
logo
  • HOME
  • NEWS
  • About US
    P.I.
    Faculties
  • STUDENTS
    ALUMNI
  • Publications
    Journal Articles
    Conference Papers
  • Research
    Research Directions
    Projects
    Experiment

Aijia`s Paper accepted by Composites Part B

分类:NEWS

祝贺李爱家关于多场模型预测复合材料强度的论文“Enabling multi-stage high-temperature strength evolution prediction of ceramizable composites using a novel multi-field coupled model ”被“Composite Structures”接收!

Details:Aijia Li,Qianzhu Mao,Jinke Li,Youming Li,Xi Li, Jia Huang,Jun Xing,Chao Zhang.Enabling multi-stage high-temperature strength evolution prediction of ceramizable composites using a novel multi-field coupled model.Composites Part B 284(2024)111659

Link:https://doi.org/10.1016/j.compositesb.2024.111659

ABSTRACT

With the increasing application of CFRP in engineering structures, researchers are devoting more attention to its fatigue issues. Due to the greater complexity and diversity of composite materials compared to metals, the utilization of conventional experimental methods to assess their fatigue performance incurs higher costs. Consequently, enormous efforts have been made to seek accurate and reliable methods for the prediction of fatigue properties of composites in a short time. The present review paper summarizes various fatigue life prediction methods for CFRP composites, including semi-empirical methods, finite element methods, nondestructive testing technology (NDT) based methods and data-driven methods. The advantages, limitations and application scopes of those methods are discussed in details. The semi-empirical methods predict fatigue life expediently and quickly, yet it exhibits limited adaptability to different material types and structural configurations. Finite element methods are applicable for predicting fatigue life in various complex composite engineering structures, but they require extensive experiments for parameter calibration. NDT based methods enable the rapid acquisition of a substantial amount of data relevant to fatigue damage for life prediction; however, accurately correlating NDT data with different types of fatigue damage still needs further investigation. Datadriven methods can integrate extensive historical data for predicting fatigue performance of composite materials; however, effectively filtering and cleansing data related to fatigue remains a challenging task. This review paper aims to provide the most relevant and up-to-date information on the fatigue property prediction methods for CFRP composite, and the potential and development of newly proposed fast prediction methods are also prospected.

上一篇:Honggang`s Paper accepted by International Journal of Impact Engineering!
下一篇:ZhaoSai`s Paper accepted by Composites Science and Technology!

热门推荐

  • Meihe`s Paper accepted by Energy Advances!
  • Honggang`s Paper accepted by International Journal of Impact Engineering!
  • Aijia`s Paper accepted by Composites Part B
  • ZhaoSai`s Paper accepted by Composites Science and Technology!
  • Gongzheng`s Paper accepted by Composite Structures!
  • Dengyong`s Paper accepted by Theoretical and Applied Fracture Mechanics!
  • Yuqi`s Paper accepted by Engineering Fracture Mechanics!
  • Huanfang`s Paper accepted by Composites Part A!
  • Jiahui`s Paper accepted by Polymer !
  • Junchao`s Paper accepted by Composites Science and Technology!

联系我们

西北工业大学冲击动力学研究小组

手机:

邮箱:chaozhang@nwpu.edu.cn

地址:陕西省西安市碑林区友谊西路127号

Copyright © 2023 zhangchao
陕ICP备2022002662号
陕西省西安市碑林区友谊西路127号