• HOME
  • NEWS
  • About US
    • P.I.
    • Faculties
  • STUDENTS
    • ALUMNI
  • Publications
    • Journal Articles
    • Conference Papers
  • Research
    • Research Directions
    • Projects
    • Experiment
logo
  • HOME
  • NEWS
  • About US
    P.I.
    Faculties
  • STUDENTS
    ALUMNI
  • Publications
    Journal Articles
    Conference Papers
  • Research
    Research Directions
    Projects
    Experiment

Chunlin`s Paper accepted by Engineering Failure Analysis!

分类:NEWS

     祝贺杜春林关于复合材料高速和超高速冲击损伤行为研究的论文"On the impact damage characteristics of spread-tow woven composites: From high velocity to hyper velocity"被 Engineering Failure Analysis 接收。
 
Details:Chunlin Du, Rong zhu Xia, Peng Liu, Wenchen Wu, Zhenqiang Zhao, Chao Zhang*. On the impact damage characteristics of spread-tow woven composites: From high velocity to hyper velocity. Engineering Failure Analysis, 2023, 146, 107109.

Link:https://doi.org/10.1016/j.engfailanal.2023.107109

ABSTRACT:

Spread-tow woven composites are known to be economically efficient with great potential for use in aerospace applications where components will inevitably suffer various impact threats during their service. In this work, the impact damage behavior of woven composite panels under a wide range of velocities (from about 0.2 km/s to 1.5 km/s) are experimentally and numerically investigated. The damage distribution, ballistic failure mode, and delamination areas are examined in detail. A systematic series of verification studies at a variety of projectile velocity scales—ranging from damage distributions to simulations of the evolution of delamination—were performed to fully evaluate the capabilities of the impact model. The model predictions show good agreement with the experimental results: the delamination zone as determined by ultrasonic C-scan images and the damage behavior of the spread tow woven composite under a wide range of impact velocities were accurately predicted. At high and hyper velocities, the asymmetrical patterns of damage in the panels are similar. The predictions of damage evolution indicate that the larger delamination area results from the large deformation of the rear side of the panel,reducing the bending stiffness of the woven composite and allowing extensive local delamination that is not visible. These results can provide a useful reference for obtaining the dynamic response of a carbon fiber–reinforced polymer woven composite and can aid in the design of composite panels with appropriate impact resistance properties.

上一篇:Gong Zheng`s Paper accepted by APPLIED MATHEMATICS AND MECHANICS (ENGLISH EDITION)!
下一篇: Gong Zheng`s Paper accepted by European Journal of Mechanics / A Solids!

热门推荐

  • Meihe`s Paper accepted by Energy Advances!
  • Honggang`s Paper accepted by International Journal of Impact Engineering!
  • Aijia`s Paper accepted by Composites Part B
  • ZhaoSai`s Paper accepted by Composites Science and Technology!
  • Gongzheng`s Paper accepted by Composite Structures!
  • Dengyong`s Paper accepted by Theoretical and Applied Fracture Mechanics!
  • Yuqi`s Paper accepted by Engineering Fracture Mechanics!
  • Huanfang`s Paper accepted by Composites Part A!
  • Jiahui`s Paper accepted by Polymer !
  • Junchao`s Paper accepted by Composites Science and Technology!

联系我们

西北工业大学冲击动力学研究小组

手机:

邮箱:chaozhang@nwpu.edu.cn

地址:陕西省西安市碑林区友谊西路127号

Copyright © 2023 zhangchao
陕ICP备2022002662号
陕西省西安市碑林区友谊西路127号